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The rapid expansion of a turbulent boundary layer in supersonic flow is studied 
analytically and experimentally. Emphasis is placed on the effect of bulk dilatation 
on turbulent fluctuations. The hypotheses made in the analysis are similar to those 
in the rapid distortion theory and are used to simplify second-order closures. By 
assuming that the fluctuating velocity is solenoidal an extension of classical subsonic 
models is proposed. A new variable is defined, which takes into account the mean 
density variations, and behaves like the Reynolds stress tensor in subsonic flows with 
weak inhomogeneities and a weak dissipation rate. The results of the analysis are 
compared with turbulence measurements performed in a supersonic boundary layer 
subjected to an expansion fan. The proposed approximations describe correctly the 
evolution of turbulence intensities : bulk dilatation contributes predominantly to the 
Reynolds stress evolution. The boundary layer is ‘ relaminarized ’ by the expansion. 
Downstream of the latter, the layer returns to equilibrium. Measurements show that 
the turbulence decays slowly in the outer layer and increases rapidly in the inner 
layer. 

1. Introduction 
The initial work on turbulence in compressible fluids (Kovasznay 1953; Moyal 

1952; Morkovin 1962) served to clarify the similarities and differences that exist 
between low- and high-speed fluid flow. The analysis of experimental results led 
Morkovin (1962) to expect ‘ that  the essential dynamics of these supersonic shear 
flows will follow the incompressible pattern ’. Compressibility, therefore, seems to 
have little effect on the turbulence structure, if the flow is non-hypersonic (Bradshaw 
1 977). Recent space-time correlation measurements (Demetriades 1976 ; Bonnet & 
Alziary de Roquefort 1982) reinforced these conclusion. However, the flows considered 
by these investigators were quasi-parallel, with slow longitudinal evolution and no 
heat source. In  such conditions, the mean velocity field can be described as a nearly 
pure shear flow and the mean velocity divergence is small and can be neglected; 
although the mean density varies in the direction perpendicular to the wall, there 
is practically no mean compressibility since the mean velocity field is nearly 
solenoidal. Moreover, since the fluctuating Mach number has low subsonic values, it  
is not surprising that these flows exhibited properties roughly like those found in 
low-speed flows. 

In contrast, if a supersonic turbulent flow is subjected to a strong pressure 
gradient, the results demonstrate some surprising responses. Longitudinal mean 
density variations are created, the mean velocity divergence can become comparable 
to the mean shear, and the turbulent transport can be strongly affected through the 
‘extra rate of strain’ terms in the kinetic energy and Reynolds stress equations. Some 
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aspects of this problem were examined by Batchelor (1955), and the implications for 
turbulence models were considered by Wilcox & Alber (1972), Bradshaw (1974) and 
Rubesin (1976). However, as noted by Bradshaw (1976), little is known about the 
influence of bulk dilatation on the turbulence structure. 

Another problem typical of high-speed flows is to determine how the turbulent 
fields are affected by density fluctuations. The density fluctuations appear explicitly 
in the equations for the turbulent kinetic energy and the Reynolds stress tensor when 
there is a pressure gradient; these terms can be important if the pressure gradient 
is strong enough (Gaviglio et al. 1977). Therefore, if it  is assumed that in a 
zero-pressure-gradient non-hypersonic flow the turbulence structure is similar to that 
observed in subsonic flows, an indication of the influence of density fluctuations in 
the accelerated zone can be obtained. 

In  the present work (Dussauge 1981), we attempt to improve our understanding 
of these phenomena by both analytical and experimental means. The analysis (992) 
deals mainly with the changes in the turbulent transfer induced by a mean dilatation, 
that is, the action of the mean field on the turbulence structure. The simplest case 
occurs when the distortion is very rapid; this situation is considered here. As will be 
seen in 92, the rapid distortion theory has been developed to the extent that it is able 
to predict the evolution of turbulent quantities in various situations. For example, 
an adaptation of this theory to the case of supersonic flows has been proposed by 
Goldstein (1978) and was applied to predict the evolution of turbulence in a 
Prandtl-Meyer expansion. However, this work supposes that the mean field is 
irrotational and homentropic and the incident turbulent field is isotropic. If we now 
consider rapidly distorted shear flows, the mean field is vortical, there are entropy 
gradients and the initial turbulent field is anisotropic. In  this case, it is difficult to 
apply Goldstein’s results directly. In  the present work, the basic assumptions of the 
rapid distortion theory are used to simplify second-order closures. The analysis shows 
that classical incompressible models for the rapid part of the pressure velocity 
correlation can be extended to compressible flow. Calculations are made and 
compared with experimental results. The experiment is presented (993 and 4):  
measurements are performed in a boundary layer subjected to a rapid expansion with 
a significant decrease in mean density and pressure. It is well known that these 
conditions cause the turbulence level to decrease, and if the pressure change is large 
enough a ‘relaminarization’ or ‘reverse transition ’ can occur (Sternberg 1954; 
Morkovin 1955 ; Narasimha & Sreenivasan 1979). However, the mechanism leading 
to this relaminarization in supersonic flows was not clearly identified, although 
Bradshaw (1976) suggested that bulk dilatation could play an important role. The 
experimental results include measurements of mean and fluctuating quantities in the 
expansion itself and in the relaminarized boundary layer recovering to new 
equilibrium properties. Finally (3 5), the comparison between analytical and 
experimental results is discussed. 

2. Analysis 
2.1. Preliminaries : the assumption concerning the velocity fluctuation field 

We wish to describe the rapid distortion of a turbulent velocity field by a bulk 
dilatation, that is, by a mean field where the velocity gradient aSi/3xj reduces to 

a . i i k / a X $ @  (S, is the component of the mean mass-weighted velocity and 6,  is the 
Kronecker delta). Classically, the equations are obtained by linearizing the momentum 
equation, taking the Fourier transform and calculating the three-dimensional spectra 
related to Reynolds stresses (see for example Batchelor & Proudman 1954; Ribner 
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& Tucker 1952; Craya 1958; Moffatt 1968; Hunt 1977; Goldstein 1979; Townsend 
1980). After integrating in wavenumber space, the turbulent kinetic energy or the 
shear stresses are deduced. Earlier versions of this theory used the assumption of 
local homogeneity, i.e. the turbulent integral scale was supposed small compared 
with the spatial scale of the mean flow. This difficulty is overcome in more recent 
versions (Hunt 1973, 1977). Indeed, the local homogeneity assumption is required 
to obtain solutions of an analytical form in simple situations. This assumption is 
however independent of the basic idea that the problem is governed by a linear set 
of equations, if small-amplitude fluctuations are subjected to a mean distortion 
during a time much shorter than a characteristic timescale of the eddies. With such 
a method, the initial three-dimensional spectra must be specified. Unfortunately, the 
latter are not generally known when the flow upstream is a shear flow. Moreover, the 
experimental comparisons usually involve only one of the Reynolds stresses, i.e. the 
variance of longitudinal velocity fluctuations ; in supersonic flows this quantity can 
be more accurately measured than the full turbulent kinetic energy or the associated 
spectra. Hence we consider the Reynolds stress evolution, rather than the evolution 
of other quantities. The simplifications of second-order closure needed for a rapid 
distortion approximation are not straightforward, as pointed out by Hunt (1977), 
mainly because terms involving pressure fluctuations must be modelled. Because of 
this requirement, the solution is generally not exact. By examining the pressure 
equation, however, some trends may be found, and these may be used to get 
information regarding the Reynolds stress evolution. 

Another difficulty encountered a t  the outset is to define the properties of the 
velocity fluctuation field in a supersonic shear flow : this is required to describe the 
pressure fluctuations, which in turn influence the turbulent transfer process. 

It was noted in the introduction that,  for zero-pressure-gradient flows, the 
fluctuating motions in subsonic and supersonic flows seem to have common statistical 
properties. This was recently confirmed by the direct simulations of compressible 
turbulence by Feiereisen, Reynolds & Ferziger (1981). Their results suggest that in 
a homogeneous shear flow the compressible (non-zero divergence) part of the 
fluctuating motion can be neglected if the fluctuating Mach number is sufficiently 
small. Moreover, supersonic boundary layers in a moderate pressure gradient can be 
successfully computed with the same methods used in subsonic flows (see, for 
instance, Bradshaw 1974; Wilcox & Rubesin 1980; Galmes, Dussauge & Dekeyser 
1983), suggesting that the turbulent mixing process is governed by similar mechan- 
isms. Hence the assumption that the fluctuating motion is incompressible, i.e. 
au;/axi = 0, appears to be a reasonable approximation. This assumption is not new. 
For example, Ribner & Tucker (1952) used i t  to calculate the damping of turbulence 
through nozzles; the results yield the right trend, even in shear flows (Sternberg 1954; 
Morkovin 1955). Later work by Goldstein (1978), however, showed that in an 
irrotational distortion the fluctuating field does not remain truly solenoidal. Never- 
theless, we shall assume here that,  to a good approximation, the fluctuating field is 
solenoidal. With respect to Moyal’s separation (1952) of the velocity fluctuation into 
a solenoidal part and a non-zero-divergence part, we restrict our analysis to 
situations where the solenoidal part is much larger than the other part. It then 
follows that material derivatives of entropy, and pressure fluctuations (but not 
necessarily the fluctuations themselves) are small, as required by mass conservation. 
This choice implies that the phenomenology used in a incompressible turbulence can 
be applied, and therefore the turbulent scales can be derived from subsonic work. 

Favre averaged variables are used in the present work. The velocity fluctuation u; 
is not centred since $ ?= 0 ; then it is clear that the condition &;/axi = 0 is not) fulfilled 
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in the general case. It would probably be more convenient to use the hypothesis: 
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- 
au;R/axi = a(u;+p'u;/p)/axi = 0, 

where u;" denotes the velocity fluctuation in Reynolds averaging. However, in our 
particular case, only small fluctuations will be considered; therefore, p 7 , p  is much 
smaller than u; and the two definitions of velocity fluctuation can be interchanged 
with very little error. 

2.2. Order of magnitude analysis 
Here, we determine the order of magnitude of terms involving density or 

temperature fluctuations. 
As recalled by Bradshaw (1977) and Fernholz & Finley (1981), the 'Strong 

Reynolds Analogy' (Morkovin 1962; Young 1951) holds for flows without heat 
sources. That is, 

Here, T represents the temperature, p the density, y the ratio of specific heats, M 
the Mach number, u1 the longitudinal velocity component, (-) an ensemble average, 
(") a mass weighted average and ( )' a fluctuation, Equation (1) has been found to 
apply in some complex supersonic flows (Gaviglio et al. 1977; Debieve 1983) and it 
will be verified experimentally in the present experiment. 

Since the Prandtl number for air is nearly unity, it will be assumed that the 
temperature and velocity fluctuations have approximately the same spatial scales. 

Consider a rapid distortion. Here, the time of flight of a fluid particle through the 
region of distortion is small compared to the timescale of the energetic motions. The 
latter is of the same order as the 'turnover time ' of the large structures, and therefore 
approximately equal to A/q' ,  where A represents an integral lengthscale deduced for 
e x a m k f r o m  the longitudinal velocity correlation and q' is given by the relation 
q'2 = u;ui (Sabot, Renault & Comte-Bellot 1973). If Uis an average value of the mean 
velocity in the distortion, the length of which is La, we obtain the classical inequality. 

If condition (2) is fulfilled, it  may be assumed that the kinetic energy dissipation rate 
per unit mass e does not vary significantly in the distortion, and the distortion is 
considered to be 'rapid '. 

The Reynolds stress equations, written in terms of mass weighted variables, are 
given by : 

D- -ac. -ac. -u!u! = -u.u 2 - u . u  -2 
xk 

a k  3 k  Dt a xk 

(Favre et al. 1976). 
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The turbulent stress uiuj is defined by u;,~; = pu;uj/p. In this equation, a/ax, is the 
space derivative in the k direction; D/Dt  = (a/at)+C,(a/ax,) is the derivative along 
a m z n  streamline ; p is the pressure ; fik the viscous stress and eij the dissipation rate 

Terms (I) and (11) are production terms and terms (IV) and (V) represent the 
diffusive and dissipative effects, respectively. When the flow is strongly accelerated, 
the significant contributions to the first production term are those involving aE,/ax,, 
and aC,/ax, - AUIL,, where AU is the velocity increase through the distortion. The 
longitudinal pressure gradient is given approximately by i3/i3xl - pUAU/L, ; the 
transverse pressure gradient is assumed to be comparable to ap/axl. 

The pxcontribution in the second production term is obtained by assuming that 
the density-velocity correlation coefficient is nearly 1 ,  and by using ( 1 ) .  The 
dissipation rate E , ~  is determined by assuming that isotropy is achieved in the 
dissipative range, and by the classical inviscid estimate E - q f 3 / A .  

The diffusion terms are a little more difficult to deal with since they depend on both 
the turbulent quantities and the density variation ; these various contributions are 
tentatively taken into account in Appendix A, where further details of the order of 
magnitude estimates are reported. 

From these estimates, we find that for moderate supersonic Mach numbers, terms 
(I) and (11) have comparable values (Gaviglio et al. 1977), and the dissipation and 
diffusion are small compared to the production if the following inequalities hold: 

A-’ - -  
of u; u;. 

Inequality (4) represents the condition that dissipation can be neglected and 
inequalities ( 5 a )  and ( 5 b )  hold if the diffusion is small (see Appendix A). 

We need to pay particular attention to the pressure terms (term I11 in (3)). In  many 
subsonic second-order models, these terms are separated into two parts: a ‘rapid’ 
part, corresponding to the pressure fluctuation developed in a rapid distortion, and 
a return-to-isotropy ’ part, corresponding to the non-linear terms of the pressure 
equation. If the latter have the same order ofBgnitude in supersonic and subsonic 
flows, a rough estimate can be given by s(u;u;/qf2-+Sij). A t  worst, the ‘return- 
to-isotropy’ terms are probably as large as B and therefore, if inequality (4) holds, 
the return-to-isotropy term can be neglected. 

2.3. The rapid part of the pressure-strain term and the, effects of mean dilatation 
The so-called ‘rapid part’ of the pressure term is obtained by linearizing the Euler 
equation for small fluctuations. The approach given here, developed in Dussauge 
(198l), is basically adapted from Lumley (1975). If au;/ax, = 0, and if the mean flow 
is steady with small mean velocity second derivatives, the pressure equation is then 
given by 
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The first term on the right-hand side is the same as that found in subsonic flows 
and the second one is formally analogous to the leading term in buoyancy problems. 
It can be shown (see Appendix B) that in our case these two terms are of the same 
order. In addition, it can be seen that compressibility introduces two supplementary 
terms : the second term on the left-hand side and the last term on the right-hand side. 
Note that, on the left-hand side, the term (a(ln p)/axi) (ap’/axJ involves fluctuations 
at lower wavenumbers than the Laplacian term does. Hence, we can find a limiting 
wavenumber where only a2p’/i3x,ax, needs to be retained. An estimate of this limit, 
given in Appendix B, indicates that the wavenumber k must satisfy the condition 

Alternatively, using Taylor’s hypothesis, a condition on frequency n can be obtained 

U A p  1 n 9 --.- 
27c p L,‘ (7) 

It is also shown in Appendix B that the terms in the brackets on the right-hand side 
can be neglected if 

n+- 

In  our experiment, the inequalities (7)  and (8) are satisfied a t  all but the lowest 
frequencies. Poisson’s equation can be used for the main part of the energetic range, 
as long as we exclude the lowest wavenumbers. Hence (6) reduces to 

(8) 
ALJ 

La2K‘ 

Since (9) is linear, the contributions of the source terms can be examined separately. 
Consider the contribution of u; to the pressure fluctuations. For this purpose, it 

is convenient to separate the velocity gradient tensor into an isotropic part 
aSk/i3xkStj, a symmetric part with zero trace (pure strain) and an antisymmetric 

part (vorticity tensor) : 

is assumed to be zero 

with 

Hence, - 

It can be seen from (10) that p‘ depends only on the deviatoric part of the mean 
velocity gradient and not on the bulk dilatation. It should be stressed that this result 
is obtained only because the fluctuating motion was assumed to be incompressible, 
and the same conclusion can be reached by applying this assumption to the models 
proposed by Lumley (1975) or Launder, Reece & Rodi (1975) for the incompressible 
case. Therefore, it can be shown that the rapid part of the pressure-strain term 
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depends only on the deviatoric part aCi/axj-@C,/ax,&ij and it does not depend on 
the divergence of the mean velocity field. In  fact, the supersonic models are obtained 
simply by replacing i3Ci/i3xj in the low-speed formulation by aii,/axj -i(i3C,/ax,)8tj. 

The particular case of a rapid distortion with only mean dilatation can now be 
examined. As the fluctuating pressure terms do not depend on mean velocity 
divergence, (3) reduces to  : 

By using mass conservation, the integration of (1 1) is straightforward. Hence, 
Tij = u;uj/(p)3 is constant along a mean streamline whatever i and j ;  an identical 
result was found by Batchelor 1955 from dimensional arguments based on angular 
momentum conservation. If uiu, remains proportional to $, whatever i andj ,  all the 
turbulent stresses vary a t  the same relative rate and the anisotropy of the Reynolds 
stress tensor remains unchanged. 

The contribution of p’ to the pressure fluctuation is now examined. For strongly 
accelerated inviscid flows, the acceleration vector C,(aC,/axj) is virtually balanced by 
the mean pressure gradient - ( l/p)(i3p/axi). Moreover, if the ‘no-sound ’ assumption 
p’/p x -TIT (Laufer 1969) can be applied, and if the mean temperature and 
velocity fields are only weakly inhomogeneous, (9) becomes 

Ty - 2  

? I ’  

According to the same argument, the production terms (11) of (3) can be expressed 
in another form. These terms can be related to the Reynolds stress through algebraic 
relationships to avoid modelling the t u r - e n t  maLflux by a transport equation. 
First, the ‘no-sound’ assumption gives p’u;/p = - Tui/5? and term I1 becomes 

Secondly, the Strong Reynolds Analogy (SRA) leads to the following expressions 
(Debieve, Gouin & Gaviglio 1982): 

__ N 

U12 x - RT1 (y - 1 ) M2 &, !F U 

__ 
and T u i  = 0 for a two-dimensional flow. 

RT, ,  RT2 are the correlation coefficients between temperature fluctuations and the 
velocity fluctuation components ui, u;, respectively, and R,, is the correlation 
coefficient between u; and ui; C is the modulus of mean velocity. 

Then term I1 of (3), and (12) have the same form as in buoyancy problems. For 
example, if i3u;/i3xi = 0, the model proposed by Lumley&975) - can be applied to our 
case. The formulation is linear with respect to T u ; ,  uiu; and Tij ,  and therefore in 
practical cases Tii is the only variable that appears in the present problem. 

Before describing the models used in the calculations, the compressibility effects 
involved in the present analysis can be considered. For simplicity, the contributions 
of mean velocity divergence and of pressure gradient are examined separately. 
However, these two effects could have been studied together by writing the simplified 
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Reynolds stress equation, assuming that the mean velocity gradient reduces to 
+ ( a i i k / a X k ) 6 i g  and finally noting that the divergence does not appear in the pressure- 
strain terms. After some obvious algebraic manipulations the equation for Tij is 
obtained : 

_ _ _ -  
-+p II ap /apt ap? p u . - + p u i -  ui-+u:- 

3 axi ax j  axi 3 axi 
p% -T.. = + Dt a3 pf 9 

with 

In the present problem the effect of streamwise mean density variations is contained 
in Tij itself: this is due to the solenoidal velocity fluctuations assumption. The 
influence of p' (or T'), combined with the mean pressure gradient is represented by 
the terms on the left-hand side of the equation. Then for p'/p < 1 or for zero mean 
pressure gradient the only compressibility effect to be taken into account is due to 
longitudinal changes of mean density. If there is a mean pressure gradient, the 
density fluctuations will affect Ti j .  The limitation of the present approach appear 
more clearly: in a constant pressure quasi-parallel flow, for example a supersonic 
mixing layer, the longitudinal gradient of mean density is small, so i3iik/i3xk can 
probably be neglected in comparison with the mean shear. As the mean pressure 
gradient is zero the linear contribution of p' /p  can be neglected. It is then likely that 
the observed spreading rate of such flows can be related to mechanisms neglected in 
the present analysis, for example the modifications to pressure transport or return- 
to-isotropy brought about by density gradients or density fluctuations. 

2.4.  Models used in the present work 
The equations used to determine the Reynolds stress tensor are the following: 

D 
Dt = -Tik ( D j k + R j k ) - T j k  ( D i k + R i k )  

with a(i)  = RT1 ifi = 1 ,  

= o  i = 3, 

"ij = (nij)u + ( ~ i j ) p .  and 

and ( 7 ~ ~ ~ ) ~  are the contribution to nij of the mean velocity gradient and of the 
mean pressure gradient, respectively. 

Launder, Reece & Rodi (1975) (LRR) 
Three different models will be used for ( 7 ~ ~ ~ ) ~  : 

(nij)u = Tkk[gDij+o.87(aqjDiq+aq$Djq-$aql D l q 6 i j )  

+0.656(aqiRjq+aqjRiq)l, 
m 
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Lumley (1975) (L) 
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Naot, Shavit & Wolfsthein (1970) (NSW) 

To represent ( n i j ) p ,  only one model was retained (Lumley 1975) : 

A brief comparison can now be made between the hypothesis in the present analysis 
and those used by Goldstein (1978) to calculate the rapid distortion in a centred 
expansion. 

Goldstein chooses isotropic initial conditions for the fluctuations. This choice, 
although of great importance for the actual evolution of turbulent kinetic energy in 
the distortion, does not basically change the physics of the problem; the condition 
of homogeneity is not required, the turbulent velocity can have a non-zero divergence 
and the low-wavenumber range is calculated without approximation. Since pressure 
fluctuations are calculated no particular assumption is needed. On the other hand, 
the mean entropy must be constant and the mean flow irrotational. 

In the present analysis, the velocity field is required to remain solenoidal and the 
temperature fluctuations are assumed to be practically isobaric everywhere in the 
flow. Pressure fluctuations are modelled, and since the 'pressure transport' is 
neglected, the turbulent field is supposed to be weakly inhomogeneous. However, the 
models can be applied to flows with entropy gradients and mean vorticity. Features 
common to the two analyses are the neglect of viscous and nonlinear effects, i.e. for 
second-order closure, the neglect of dissipation, turbulent diffusion and return- 
to-isotropy terms. In  $ 5 ,  we will compare predictions of the Reynolds-stress 
transport equations, using the present simplifications and the above models for x i j ,  
with the measurements described in §$3 and 4. 

3. Experimental arrangement and measurement techniques 
Measurements were performed in the IMST continuous supersonic wind tunnel. 

The cross-section of the nozzle is 10 x 15 cm2. A 1 cm thick fully turbulent boundary 
layer developed on the floor of a half-nozzle, and a t  the station upstream of the 
expansion the Reynolds number based on momentum thickness was 5000. The 
nominal free-stream Mach number was 1.76 and the stagnation pressure was 
40530 N/m2. Fifteen minutes after starting the tunnel the recovery factor was 0.91 
and therefore the wall conditions were practically adiabatic. Transition was triggered 
by a roughness strip placed upstream of the throat. Mean velocity profiles and 
turbulence spectra showed that, at a stagnation pressure of 26000 N/m2, transition 
was achieved well upstream of the zone where the present measurements were 
performed. 

A 12" deflection of the wall around a sharp edge produced an expansion fan by 
a turning without separation. The experimental configuration and the coordinate 
system is shown in figure 1. 

Total pressure, static pressure and total temperature profiles were measured. The 
total pressure measurements were performed with flattened Pitot probes. We used 
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FIGURE 1. Sketch of the flow. 

Voisinet & Lee’s calibration (1972) to check that no low-Reynolds-number correction 
was required. Spatial integration errors’ were estimated from Allen (1972) ; it  was 
found that the maximum error was comparable to the uncertainties in the probe 
location, and no correction was therefore applied. 

Upstream and downstream of the expansion, the wall static pressure was measured 
using pressure taps. In  the free stream, the static pressure was deduced from Pitot 
probe measurements. Out of the viscous sublayer, the expansion zone can be 
considered as a vortical perfect fluid flow, if the pressure gradient is much larger than 
the friction force (see for example Ddery & Masure 1969). The flow can then be 
computed from the Euler equations by the method of characteristics. In  our case, 
it was estimated, from the analysis proposed by Narasimha & Viswanath (1975), that 
the pressure gradient is about a hundred times as large as the friction force. This 
method was then used in our case to compute the mean static pressure and other 
mean quantities within the expansion. The results are probably more accurate than 
measurements performed with a static pressure probe, for this type of probe can 
perturb the expansion fan, and is very sensitive to yaw. 

The total temperature was measured in the supersonic part of the flow ( M  > 1.3), 
with hot-wire probes using the method of Laufer & McClellan (1956). The wire 
diameter was 5 pm and the aspect ratio was 300. The wall temperature was checked 
by BTE-CTE thermocouples inserted in the wall, and good agreement with the 
extrapolated hot-wire results was found. 

Turbulence measurements were made with hot-wire probes. The filament was 
platinum-plated tungsten with a diameter of 2.5 pm and an aspect ratio of 320. The 
wires were welded to steel prongs with sufficient slack to avoid strain gauging: wires 
with spurious strain-gauging signals greater than 3 yo of the total signal r.m.8. value 
were discarded. 

The anemometer was of the constant-current type, manufactured by Shapiro and 
Edwards, South Pasadena, CA. The uncompensated amplifiers were modified to have 
a 320 kHz bandwidth and to  improve the signal-to-noise ratio. According to Kistler 
(1959), more than 90% of the signal variance in zero-pressure gradient boundary 
layers is captured if the amplifier bandwidth is greater than 4 U J S .  In  our flow Um/8 
is typically 50 kHz, so that Kistler’s criterion is well fulfilled. The hot wire was 
compensated for thermal lag effects and the time constant was measured in situ for 
each point using a square-wave-current injection method. 

The temperature and velocity fluctuations were separated using Kovasznay’s 
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fluctuation diagram technique and the sensitivity coefficients were determined as in 
Gaviglio (1971, 1978). The diagrams were obtained by operating the wire a t  14 
different overheat ratios a; in the range 0.02 < a; < 0.5 and hyperbolas were fitted 
through the points by a least-squares method. A preliminary study determined that 
the value of the turbulent intensity of velocity and/or temperature could be affected 
if less than 12 points was used. 

The measurements were corrected for noise and the imperfections of the compen- 
sating circuit according to Gaviglio & Dussauge (1977) and Gaviglio (1978). In  the 
previous references, it  is stressed that the imperfections result in a bandwidth 
limitation which depends on the time-constant value; a correction method is 
proposed, based on the knowledge of the time constant and of the initial curvature 
of the erroneous signal autocorrelation; this method proved to be very effective, even 
in severe situations. I n  the present experiment, the corrections applied to the r.m.s. 
signal value typically ranged between 5% for low overheat ratios and 15% for 
a; = 0.5. Autocorrelations were measured with delay lines (Adyu Electronics) and 
a home-made analogue correlator ; the bandwidth of each instrument was a t  least 
350 kHz. 

4. Experimental results 

The properties of the incoming boundary layer are summarized in table 1, where So, 
a*, 8 are respectively the boundary-layer thickness (ZJue = 0.999), the displacement 
thickness, and the momentum thickness. 

The mean velocity profiles of the incoming boundary layer were plotted using the 
Van Driest transformation 

4.1. Upstream of the expansion zone 

(see for example, Fernholz & Finley, 1980), where V was determined from p and Z, 
measurements. The friction coefficient C, and the friction velocity u, were deduced 
from the slope of the logarithmic profiles by assuming that the von Karman’s 
constant is 0.41. The result is given on figure 2, which presents V+ = V / u ,  versus 
y+ = y u r / v w ;  v, is the wall kinematic viscosity. These data agree well with the 
relation 

1 

X 
V+ = - lny++B, 

for 30 < y+ < 200 and B = 5 .  However, a more precise fit can be achieved by taking 
B = 5.7. The uncertainty could be due to the determination of V from experimental 
values of /s and ill. The computation of the integral in (14) is difficult in the range 
0 < S,/ue < 0.4 because of the lack of resolution very near the wall. The same 
interpolation was used near the wall for all the profiles, and therefore the same 
departure from B = 5 can be systematically introduced. The skin friction coefficient 
used is given in figure 3 and the experimental values compare favourably with 
Michel’s correlatiod 1960). 

Figure 4 shows up measurements in the initial boundary layer using Morkovin’s 
representation. The scatter of the data is rather large. This can be due to the 
uncertainties on up, u, or 6. However, the present measurements are consistent with 
the other data in the zone where the Mach number is greater than 1.3. 
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FIQURE 2. Mean velocity profiles in the initial boundary layer (Van Driest's transformation). A, 
x, -62.5 mm; 0, -52.5 mm; 0, -42.5 mm; x , -32.5 mm; A, -22.5 mm; 0 ,  -10 mm; m, 
-5 mm; ---, V+ = In y+/x+5; -, V' = lny+/x+5.7. 
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FIQURE 3. Friction coefficient in the initial boundary layer 

I n  addition, the SRA relation between temperature and velocity fluctuations 
(equation (1) )  appears to be substantiated in the main part of the layer (figure 16) 
and the velocity temperature correlation coefficient RT1 has a nearly constant value 
of 0.8 (see figure 15). 

4.2. Expansion zone 
As indicated in $3, the mean field can be determined outside the viscous sublayer 
by the method of characteristics, if i t  is assumed that the entropy and total enthalpy 
are constant along a mean streamline. The measurements showed that the total 
temperature was virtually constant in the expansion and therefore the method of 
characteristics was used to find the mean field. The inner boundary condition was 
set by the streamline which was initially sonic, and it was assumed that this 
streamline suffered a 12" deflection ; its shape was approximated to be consistent with 
the Pitot measurements, The results of the calculation are in good agreement with 
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Y J J  

FIGURE 4. Velocity fluctuation in the upstream boundary layer. *, present data;  0, M = 1.72; 0 ,  
M = 3.56; 0, M = 4.67 (Kistler 1972); M = 2.9: A, hot-wire; 0 ,  laser (Johnson & Rose 1975); 
(A, Smits et al. (1983); m, Elena et al. (1977); 0, Debieve (1983); a, Elena & Gaviglio (1983); 
+, Yanta & Crapo.(1976). 

2 (mm) 80 (mm) e (mm) Me R, Cf 
-5 10 0.88 1.76 5000 2.25 x 10-3  

TABLE 1. Properties of the incoming boundary layer 

0 0 0 5 10 15 

Y (mm) 

FIGURE 5. Pitot pressure profiles, -, calculation; measurements: 0, z = 0; A, z = 5 mm; 
0, s = 10 mm. 
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FIGURE 7. (a) Mean streamlines. -.--, calculated; measured: V, &* = 0.4; 0, &* = 0.3; 0, 
&* = 0.2; x ,  &* = 0.15; A, &* = 0.1; 0, &* = 0.03. ( b )  Mean entropy distribution along 
streamlines ; the constant values used in the calculation are represented by lines. Arrows indicate 
the beginning of the expansion. Measurements: A, &* = 0.05, @/a), = 0.25; 0, &* = 0.1 
(y/6), = 0.43; 0 ,  &* = 0.2 (y/&), = 0.72. 
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Pitot measurements, as shown in figure 5 where pt, is the Pitot pressure, i.e. the 
stagnation pressure downstream of a plane shock wave, and ptref is the total pressure 
in the outer flow. The computed wall-pressure values are compared with the 
measurements in figure 6. 

Figure 7 gives the mean streamlines defined as the isocontours of the mass flux 

where atref is the sound speed determined from stagnation quantities in the outer 
flow. Upstream and downstream of the interaction was obtained experimentally, 
whereas in the expansion fan the mass flux was deduced from the computation and 
there appears to be a good agreement between the two determinations. The 
favourable comparison between measurements and computation is not very surpris- 
ing. The calculation assumed that the pressure gradient is much larger than the 
friction force, the total enthalpy and entropy being constant along a mean streamline. 
As reported in $3, the first condition is fulfilled in the expansion fan. Measurements 
showed that the total temperature remains nearly constant: as we are outside the 
viscous sublayer, only the turbulent diffusion can affect the total enthalpy. Since we 
consider evolutions over a small distance, the integral of diffusion terms along this 
distance is itself small. A quantitative justification of this assessment is proposed in 
Appendix C. It leads to the conclusion that the variation o k t a l  temperature ATt 
after a length L, can be approximated by ATt (&/A)  (-uiuL/Cp); A is a typical 
lengthscale for momentum diffusion, for example the initial boundary thickness. I n  
our case, this corresponds to a variation AT, of about 1 OK. The last point is to show 
that the mean entropy does not vary much in a rapid distortion without shock wave. 
Sources of entropy are turbulent diffusion, viscous dissipation or heat conduction. 
In Appendix C the details of an order-of-magnitude analysis are given. I n  particular 
it is recalled that in supersonic boundary layers these three contributions are 
comparable. It is shown that a typical value of the entropy sources is given by the 
rate of dissipation, which is practically constant in a rapid expansion. It follows that 
the variation of entropy As in a rapid distortion of spatial extent Ld is of the order 
of yR(Ld/A,) (q i /U)/m;.  R is the perfect gas constant, m, the Mach number of velocity 
fluctuations before the expansion, m, = qi/(yRT,)i. If the mean entropy So is nearly 
constant, then As/S, -+ 1 .  If the total enthalpy is constant, So is defined in the 
upstream boundary layer by 

The condition to  be fulfilled is then: 

As in a rapid distortion (L , /A, )  (qh/U,) -+ 1, a sufficient condition for constant 
entropy is : 

m; -+ 1.  
In (1 +icy- 1)Mt) 

Entropy is then expected to change if m, is large and M ,  small. I n  our particular 
calculation, the more severe situation is found on the sonic line where m, < 0.1 ; with 
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FIGURE 8. Velocity fluctuations in the distortion. 0, upstream profile: A, along the last Mach 
wave; --- , dilatation effect; shaded zone, dissipation effect. Arrows indicate streamline 
correspondence. 

this value the inequality is satisfied. Examples are given in figure 7 ( b ) ,  which presents 
the entropy along particular streamlines. Experimental values are obtained by 
interpolation and the constant values used in the calculation are represented by lines. 
It appears that the entropy can be considered as constant. 

Turbulence measurements were performed normal to the floor upstream of the 
expansion, along the last Mach wave, and along two streamlines (&* = 0.063 and 
& * ~ 0 . 2 1 )  which are initially located at y/6, = 0.3 and 0.8 respectively. A decrease 
of u ’ ~  is observed through the expansion (figures 8 and 9). A similar variation was 
deduced by Sternberg (1954) from calculations based on Ribner & Tucker’s theory 
(1952); i t  was also found experimentally by Morkovin (1955) in an expanded 
boundary layer with a flow geometry different from the present one, and by Gaviglio 
et al. (1977) in a near wake flow. 

Velocity spectra were measured upstream and downstream of the expansion 
among the two streamlines. The results are given in figure 10 and were partly 
reported by Bestion, Debibve & Dussauge (1983). These measurements are rather 
scattered. However, it  appears that along the outer streamline (&* = 0.21), no 
major change in the shape of the spectral density is found for frequencies higher than 
10 kHz. Along the internal streamline (&* = 0.063), the spectral density changes 
slightly for n > 10 kHz. 

4.3. Downstream of the expansion zone 
The expansion strongly perturbs the boundary layer; for example, the ratio lApl/rwo, 
where Ap is the pressure drop and rw0 the initial wall friction, is about 100. According 
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FIGURE 9. variation in the expansion. (a )  &* = 0.063; 0 ,  measurements; -, effect of 
dilatation; ---, model L; -.-, LRR; ---, NSW. ( b )  &* = 0.21; shaded zone, upstream and 
downstream levels deduced from figure 8. 

to Narasimha and Viswanath (1975), the boundary layer should exhibit features of 
'relaminarization'. I n  addition, as can be seen from figure 6, there is a slight 
longitudinal pressure gradient and the value of the Clauser parameter 8*(aP/as)/7, 
is about -0.25. However, such a low pressure gradient should not significantly affect 
the return of the boundary layer to equilibrium. 

The Van Driest transformed velocity profiles are shown on figure 11. No significant 
evolution is found in the external part of the profiles. I n  the initial stage 
(31.3 mm< s < 90 mm) a rather thick sublayer is found close to the wall with a 
larger velocity gradient, and the semi-logarithmic plot shows an inflection point, 
rather than a linear evolution, away from the sublayer. For s > 90 mm, a linear part 
is found and it seems that a new wall region is formed. 

The skin friction was determined from the mean measurements by four different 
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FIQURE 10. Velocity spectra. (a )  &* = 0.21 (y/& = 0.8); A, upstream; 0, downstream. 
( b )  &* = 0.063 (y/& = 0.3); A, upstream; 0, downstream. 
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FIQURE 11. Mean velocity profiles downstream of the expansion (Van Driest’s transformation). 
s=31 .3mm;  0 ,  s=40 .5mm;  0 ,  s=50 .9mm;  A, s=61 .5mm;  m, s =  70.5mm; 
s = 79 mm; 4, s = 89.5 mm; 0, s = 98 mm; A, s = 108 mm; 0, s = 113 mm. 
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FIGURE 12. Integral parameters downstream of the expansion. -, C, determined from Chew 
(1978). +, 6, mm;  0 ,  6, mm. 

methods. Two methods were based on a momentum balance and the first method uses 
the momentum equation expressed in terms of p and p ,  (see Bradshaw 1974). 

The second method uses von KLrmLn’s integral equation; the displacement 
thickness 6*, the momentum thickness 0 and the shape parameter H given in figure 
12. 

The third method uses Chew’s correlation (1978) 

with 

and V is defined according to (14). Equation (17) is in good agreement with Preston 
tube measurements in an expanded supersonic boundary layer (Chew & Squire 1979). 

Finally, C, was evaluated from the mean velocity profile slope in semi-log 
representation, and it depends on the validity of the law of the wall. If the results 
are consistent with those given by the other methods, it  may show that the law of 
the wall is re-established. As suggested by Bradshaw (private communication 1981), 
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FIQURE 13. Friction coefficient downstream of the expansion. Shaded area, range of the results 
given by the von Khrman equation; 0, formula (17); a, momentum balance; 0 ,  slope of the 
logarithmic profiles; ---- , equilibrium value. 
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FIQURE 14. The law of the wall in the relaxing boundary layer. -, s = 31.3 mm; 0, s = 98 mm; 
0, s = 108 mm; v, s = 113 mm; ----, V+ = (1/x) In nf+5.0; -.-, V+ = n'. 
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FIGURE 15. Velocity temperature correlation coefficient. 0, s = - 5 ;  0 ,  downstream 
characteristic; +, s = 31.3 mm; A, s = 89.5 mm;  A, s = 98 mm. 
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FIGURE 16. Strong Reynolds analogy. Symbols as for figure 15. 

C, is most easily obtained by adjusting the value of V+ for a given n+, rather than 
by determining the slope of the profile. However, the value of B is the subject of 
some uncertainty. As discussed previously, it  seems that a value of 5.7 describes the 
present results better than a value of 5.0. Finally, C, was determined with B = 5 for 
all the profiles; in the last four sections, a determination was also made with B = 5.7. 

The results are given in figure 13. The use of von Karman's equation depended 
critically on the curve-fitting of the experimental data, and it gave very scattered 
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FIGURE 17. Velocity fluctuations in the relaminarized boundary layer. 0 ,  last expansion 
characteristic; 0, X ,  s = 31.3 mm; 0, s = 61.5 mm; A, s = 89.5 mm; A, s = 98 mm. 

values. The momentum balance (equation (16)) gave results consistent with Chew's 
formula (Chew 1978), despite the rather short length over which the longitudinal 
derivatives could be evaluated. 

The C, values given by (17)  were checked for consistency with the measured 
momentum thickness by integration von Harman's equation to determine 8, using 
C, from (17) as an input. The result, given in figure 12, is satisfactory, in spite of the 
discrepancy found a t  s = 31.3. This result, and the rather high values of C, given by 
the momentum balance (equation (16)) at s = 31.3, could suggest flow divergence 
immediately downstream of the expansion. Surface flow visualizations, however, 
showed no particular spanwise streamline divergence. Moreover, an estimate of the 
measurement errors showed that the scatter of the data is comparable to the 
uncertainties on 0. For s > 90 mm, the law of the wall values is consistent with the 
other determinations, and they also agree well with the C, for an equilibrium 
boundary layer a t  the same Mach number and momentum-thickness Reynolds 
number. Some typical V+ profiles are shown on figure 14. For the station a t  
s = 31.3 mm, u, was calculated from (17) .  It can be seen that the shape of the profiles, 
close to  the wall, changes considerably between s = 31.3 mm and s = 98 mm. 
Downstream, similarity is found for 10 < n+ < 80. 

As mentioned earlier, the turbulence measurements show that the correlation 
coefficient RT1 remains virtually constant in the whole field (figure 15) ; besides, the 
SRA relation ( 1 )  holds reasonably well a t  all stations, y/S < 0.8 (figure 16). Some 



Rapid expansion of a supersonic turbulent flow 

- 
@-U;2bWY 

1.6 

1.2 

0.8 

0.4 

0 
0.2 0.4 0.6 0.8 

FIGURE 18. Dimensionless representation of velocity fluctuation profiles. Shaded zone, 
equilibrium measurements; 0, s = 31.3 mm; x , s = 89.5 mm; A, s = 98 mm. 
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discrepancies are observed in the outer part of the boundary layer, but here the 
intermittent nature of the flow probably reduces the accuracy of hot-wire 
measurements. - The longitudinal velocity fluctuations ui2 (figure N 17) show that for n / S ,  > 0.25, 
u: decreases slightly, whereas near the wall the u;Z level is initially very low. The 
same results are plotted in figure 18 in Morkovin’s representation. Immediately 
downstream of the expansion, the results lie well below the range of the flat plate 
data; this was expectedfor a relaminarized boundary layer. At the last two stations 
(s = 89.5 mm, 98 mm) up for n / S  < 0.1 begins to recover to an equilibrium level. 
Thus, the boundary layer appears to  recover to a self-similar state, and the mean 
and turbulent measurements are consistent with the description of relaminarized 
boundary layers (Narasimha & Sreenivasan 1979) and some properties of perturbed 
boundary layers (Smith & Wood 1985) : in the outer part of the flow the evolutions, 
which are probably governed by diffusive and dissipative processes, are slow; near 
the wall, where large mean gradients (and production terms) exist, an internal layer 
is created, growing and gradually changing the properties of the whole layer. 

- 

5. Discussion 
First, we shall check whether the rapid distortion requirements are fulfilled. For 

this purpose, we need a definition of the ‘integral’ scale A .  I n  subsonic flat-plate 
boundary layers, a typical value is 0.4 S, in supersonic boundary layers the measure- 
ments of Bestion et al. (1983) show that 0.25 S is probably a better estimate. This 
result seems inconsistent with the proposed analysis in which turbulent scales are 
proposed to be unaffected by compressibility. The measurements were performed by 
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extrapolating spectra of the hot-wire signal to zero frequencies and then using the 
fluctuation diagram technique. This procedure is of limited accuracy partly because 
of the extrapolation and partly because the heat loss through the prongs of a 
finite-length hot wire can attenuate the signal at very low frequencies. Moreover (6) 
and (7) show that a density gradient can change the pressure in a limited range 
located a t  very low frequencies (in the present case n > 3 kHz) and that this low 
frequency range and the rest of the energy range can have different behaviours. Since 
the contribution of the very low frequencies to the velocity variance is small, the 
latter remains practically unchanged. It follows that the ‘integral ’ scale determined 
from the zero-frequency intercept of the spectrum is a questionable parameter for 
defining a typical scale for large eddies. The value of 0.25 6 will nevertheless be used 
here because it underestimates the turbulent timescale and should therefore lead to 
pessimistic conclusions. The inequalities ( Z ) ,  (4), ( 5 ) ,  (7)  and (8) were evaluated along 
two streamlines initially located at y/S = 0.1 and 0.3. The value of q’ , L,JU. A along 
both streamlines is less than 0.2 and therefore inequality ( 2 )  is satisfied. 

The level of dissipation was estimated using a lengthscale Ae.  This scale is evaluated 
from the dissipation scale defined by Bradshaw & Ferriss (1971) and along the two 
streamlines; the ratio qL,/(AUA,) was about 0.2 and 0.1 respectively. Hence, the 
dissipation is much less than the production, and inequality (4) is satisfied. 

The inequalities resulting from longitudinal diffusion are more questionable : the 
left-hand side of ( 5 a )  is approximately 0.2, but the left-hand side of ( 5 b )  is about 0.4. 
This inequality resulted from the assumption of negligible turbulence downstream 
of the expansion, and this very severe condition was not obeyed in our case. Another 
estimate for the importance of the diffu5on may be made by assuming that the 
longitudinal diffusion term is of order ( U ‘ ~ ) % / L ~  and by evaluating the numerator 
from experimental data. By doing so, it is found that the diffusion term is only about 
15 % of the production term. 

As for the terms in the pressure equation, we can evaluate the frequency limit 
above which the proposed approximation is valid ; in our particular case inequalities 
(7 )  and (8) imply that frequency n must be higher than 10 kHz. This frequency is 
in the energy-containing range, but the main part of the energy occurs a t  higher 
frequencies. 

In  summary, it seems that the inequalities are a t  last approximately satisfied; the 
expansion can be considered as a rapid distortion and the simplifications proposed 
in (11) of (3) can be applied. 

Before proceeding to the results of the proposed analysis, i t  is useful to describe 
the flow behaviour in terms of the ‘extra’ rates of strain. The different components 
of the velocity gradient along the streamline &* = 0.063 were calculated in an 
intrinsic frame of reference. The method of characteristics was used to calculate the 
radii of curvature and the velocity derivatives. As in the expansion studied by 
Gaviglio et al. (1977), the transverse profiles were flattened because of the strong (and 
inhomogeneous) acceleration. The transverse velocity gradient was reduced to nearly 
zero and, as a consequence, the mean velocity divergence was much greater than the 
transverse velocity gradient; typically, the mean divergence was 1.5 times as large 
as the initial mean shear (aC,/azz),,. The extra rate of strain due to longitudinal 
curvature i3CZ/ax,, although i t  was smaller than (aC,/~xZ)o, reached significant 
negative values. Typically, D,, z -0.3 (a.ii,/axz)o and it can therefore be expected 
to reduce the kinetic energy. The mean rotation rate is not so strongly affected and 
a 30 yo decrease was observed. The rotation rate can change the Reynolds stresses, 
but it does not affect the kinetic energy. 
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To evaluate the significance of the bulk dilatation, i t  was assumed that dilatation 
effects are the only ones to be taken into account, and consequently that T,,  is 
constant. The result, given in figures 8 and 9,  shows that dilatation gives the right 
trend and there is good agreement with experimental data for y/S, > 0.4. Near the 
wall, however, t& observed decrease is not reproduced well by dilatation alone. Note 
that the initial u;" profile, for y/S, < 0.3, was not measured but extrapolated on the 
basis of Klebanoffs data (1954). 

The effect of dissipation near the wall was determined in the following way. It was 
assumed, for y/S, < 0.3, that  production balances dissipation in the upstream 
section, and that the dissipation remains constant in the Ss turbed  zone; this 
evaluation probably overestimates 6 .  The additional effect on ui2 is given in figure 8, 
which demonstrates that  the dissipation is not of the right magnitude to explain 
the near-wall behaviour, and can be neglected to  a first approximation. 

Finally, the complete linear approximation, including all roduction and pressure 
contributions (equation (13) )  was used to  determine $ along the streamline 
Q* = 0.063. The set of equations (13) was written in an intrinsic frame of reference, 
related to  the considered streamline, and the initial values chosen for the different 
g y n o l d s  stress component correspond &a subsonic self-similar boundary layer, i.e. 
ui2 x 0.4u,2, up z 0.67u,2, ului = - 0 . 3 ~ ; ~ .  Figures 8 and 9 show that the complete 
linear calculation appears to be in better agreement with the measurements than the 
bulk dilatation approximation. It is striking, however, that the three models for xij 
give nearly the same results. I n  our particular case, however, the contribution of the 
deviatorio part Dij+H,, compared to the mean pressure gradient terms is rather 
weak. Although the mean normal strains, the mean shear and the mean rotation rates 
can all have significant effects, the net result in the expansion is that  they do not 
contribute much to  the change in up: the dominant term in (13) is the one containing 
the mean pressure gradient. It is not clear that  this result applies for the entire extent 
of the boundary-layer thickness. On the one hand, i t  was suggested by Gaviglio 
et al. (1977) that the ratio of the production terms involving dilatation and mean 
pressure gradient is proportional to 1/M2. Therefore, close to  the wall, the relative 
influence of the production terms involving the pressure gradient probably becomes 
much weaker than a t  y/S, = 0.3. On the other hand, the mean strain and rotation 
rate can also change significantly through the vicinity of the wall and the increase 
of szeamline curvature. This could probably contribute to the important decrease 
of ui2 for 0.1 < y/6 < 0.3. 

Another interesting result can be deduced. The calculations ind&at*o&derable 
change in the turbulence anisotropy ; for example, the ratio uiu;. u;i/(uiui),q is 
about 0.5 and the correlation coefficient R,, is reduced by a factor of 2. Unfortunately, 
these quantities could not be measured L t h z p r e s e n t  experiment. However, a t  
S = 31.3 mm, the experimental value of u;uL/ui2 is nearly - 1 ,  for y/S < 0.5. This 
result can be due to any of the following r%ons. 

(i) The experimental determination of ului from the momentum equation is not 
very accurate. It may be supposed, from figure 13, that  the friction is overestimated 
by the momentum balance. I n  addition, the errorsin the hot-wire measurements 
generally lead to an underestimate of the value of u;" and as a result the error in 
m T2 u1u2/u1 can be about 40 yo. 

(ii) The models used can be questioned. Very often, different components of the 
Reynolds stress tensor =not predicted with the same degree of accuracy. In  our 
case, it was found that u;ui was very sensitive to the value given to a(2)  = RT2/R,, ,  
which was derived from other work and not checked in our experiment. 

7 -  7- 
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(iii) The comparison was made a t  a station located 26, downstream of the root 
of the expansion fan. Here the diffusion, dissipation and return to isotropy process 
can probably no longer be neglected, so that the comparison is probably no longer 
adequate. A linear calculation, using the LRR model and assuming that only t& 
mean shear is important, indicates that -uluz increases much faster than u;” 
downstream of the expansion zone. 

v 

6. Conclusion 
The rapid distortion of turbulence by a compressible mean flow has been considered 

with particular application to a solenoidal field of velocity fluctuations subjected to 
a bulk dilatation. An analysis of the Reynolds stress evolution suggested a modific- 
ation to the rapid part of the pressure-strain correlation terms for compressible flows. 
In  addition, a new variable was defined which included the explicit effects of density 
variations, and which can be modelled as the Reynolds stress in subsonic flows with 
weak inhomogeneities and a weak dissipation rate. The validity of the assumptions 
was checked in the rapid expansion of a boundary layer in supersonic flow, and the 
experimental results were in satisfactory agreement with the analysis. Downstream 
of the expansion the boundary layer begins to recover a new equilibrium state. For 
example, about ten boundary thicknesses downstream of the distortion a new 
logarithmic zone appears in the mean velocity profiles. In  the external part the 
turbulence is slowly damped whereas near the wall, a t  the edge of the ‘relaminarized’ 
sublayer which was stabilized by the expansion, the r.m.s. level of velocity increases. 
This new turbulence gradually invades the remainder of the layer. 

In  the expansion itself, the Reynolds stress evolution seems to depend mainly on 
the bulk dilatation production rate and, to a lesser extent, on the mean pressure 
gradient production, although these latter terms can change the turbulence aniso- 
tropy. The magnitude of the terms involving the mean pressure gradient and the 
turbulent mass flux increases as M2 and therefore they may play a predominant role 
in distortions at higher Mach numbers. More refined formulations or empirical 
information may then be needed to represent these terms. Finally, whatever the 
generality of the models used in the present work, it seems that a good description 
of a distortion such as a sudden expansion of a supersonic flow is obtained by 
assuming that the velocity fluctuations are solenoidal. 
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and Dr Debieve for valuable comments; the assistance of Dr Bestion with measure- 
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Appendix A. Order-of-magnitude analysis : The Reynolds stress equation 
We assume that typical values of velocity and density changes are A U  and Ap,  

respectively. U ,  p are representative values of the average velocity and density in 
the distortion. A scale describing the length of the distortion is L, and it is assumed 
that L, is a significant scale for the mean velocity and mean density variation. 

In  the case of accelerated flows, we are interested in strong longitudinal gradients, 
so i t  will be assumed that aG,/ax, % a G k / i h k  x AU/L,, and that, outside the 
viscous sublayer, lajili3xJ % pU AUIL,. 
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As for thk velocity fluctuations, i t 2 1 1  besupposed that the Reynolds stress 
anisotropy is not too strong so that uiui x ukuk = q f 2 .  The instantaneous density 
fluctuation p‘ is given approximately by formula ( 1 )  

since the correlation coefficient between density and velocity is of order 1 .  In  
addition, it is assumed that the turbulent lengthscales for velocity and density 
fluctuations are nearly the same. Since we are interested in the low wavenumber, 
energetic range of the spectra, a typical lengthscale A is given by the integral scale 
deduced from two-point correlation measurements. 

This scale can be used to estimate the energy dissipation rate E x q’3 /A .  However, 
the order of magnitude __ of c can be found from the work of Bradshaw & Ferriss (1971) ,  
who suggest c x (-u;uk)%/L,, where L, is a dissipation lengthscale and the ratio L , / 6  
is assumed to be function of y/8 for equilibrium boundary layers. A dissipation scale 
A ,  was deduced from L,. Hence, 

It is more difficult to obtain an estimate of diffusion terms (IV).  By assuming that 
viscous diffusion can neglected, and that pu!u/u’ x p u;uiui x p q’3, we find that 
( l / p )  ( a / a X , )  (pUaUi?$.) X (a/&,) (U;UiU;) + ~ , u p ~  ( l / p )  (ap /axk ) .  It could be 
argued that the diffusion scale is of the order of the integral scale of turbulence. This 
would lead to (a/ar,) u;uiu; x q f 2 / A ,  and this term is comparable to the 
dissipation rate. A much more severe condition would be to assume that in our 
expanded flow the turbulence is completely damped in the distortion so that 
@/ax,) u;uju; x P ’ ~ / L ~ .  We then find: 

%% 

a -  
-u;uju; x L,’ 

, , ~ a p  AP u u u -- x q13-. ‘ ’ , p a X k  P L d  

It is clear from these estimates that (I) and (11) are comparable for moderate 
supersonic Mach number, as noted by Gaviglio et al. (1977) ,  and that the dissipation 
rate is small when compared to (I) if 

Hence, diffusion is much less than production if q’/AU and ( q ‘ / U )  ( A p / p )  4 1. 

Appendix B. Terms in the pressure equation 
First, the ratio I(azp’/ax,ax,)/(a/axl In p i3p’/i3xi)l is to be evaluated. By 

taking the Fourier transform of the two terms, this ratio becomes k i / ( k i  ( d / a x i )  In 
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PI, where ki are the wavenumber vector components. The Laplacian term is dominant 
if 

k2 
lki (a/ari) lnpl %- 1 ,  

or, approximately k 9 I (a/ax,) logpl. 
By assuming Taylor's hypothesis, a condition on the frequency n is deduced 

with the same approximations given in Appendix A, this becomes 

U A p  1 
n %- ---. 

2n: p Ld 

Secondly, we consider the term 

aims. 1 ap xii 
p l  ( axjaxi p a x i  laxi . >I--- 6.-) 

Using the same reasoning as above, we find that the two terms in the brackets are 
both of order (AU/Ld)2 .  Indeed, in the case of a pure dilatation, both terms equal 
+(divii)2. These terms involve a lower wavenumber than (ap'/axi)iii (i3iii/axj), 
and they can be neglected if 

i.e. 
A U 

$ 1  or n%-. 
AU 

k ULa 27c Ld 

Appendix C .  
1. Diffusion of total enthalpy 

For steady mean flows, the equation for total enthalpy Cppt  reads 

with 

Outside the viscous sublayer, viscous and heat conduction terms may be ignored. 
Further, the order of magnitude of the right-hand-side member is assumed to be 
given by 
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Applying the SRA, and neglecting the density gradient, this term is reduced to 

---[uiu;*C, i a  - (1  + RvT/Ruv)]; G ,  ax, 
it is of the order of 

The variation ATt of total temperature produced after a distance L, is: 

where i t  was supposed that a ( d , u ~ u ~ ) / a x ,  is approximately U T o / & .  U is an average 
value of the mean velocity in the distortion; i t  is here confused with the local value 
2,. r0 is the friction upstream of the distortion and 6 the layer thickness. 

2. Variations of mean entropy in a rapid distortion 
The equation for mean entropy s" reads: 

7) (T) ( A  aT aT) 
pu,s, + - + --- . D 

TZ ax,  ax, 

A particular situation is examined: the Reynolds (or PQclet) number is large, so that 
the dissipation in the mean motion and the conduction by mean temperature can be 
neglected. Moreover, the fluctuations are supposed small and the 'no sound' 
assumption is used. Then, 

With the assumption that p' lp < 1 and TIT < 1, after expanding the last two terms 
on the left of the entropy equation and neglecting density and temperature 
fluctuations, the following approximation is obtained : 

If, as in subsonic flows, eT ;t: e(T'2/q'2), then 

It follows that, for non-hypersonic Mach numbers, these two terms have comparable 
values. On the other hand, it is obvious that turbulent diffusion and dissipation are 
of the same order. 

Then a rough but reasonable estimate of the entropy change As through the 
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Since 6 is nearly constant in the distortion, its value can be taken as that in the initial 
boundary layer, namely 6 = q2 /Ao .  Then 

with 
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